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SUMMARY

Contact stresses in meshing spur gear teeth are examined. The analysis is based upon an incremental
finite element procedure that simultaneously determines the stresses in and the contact region between
the meshing teeth. The teeth themselves are modeled by two-dimensional plane strain elements. Friction
effects are included, with the friction forces assumed to obey Coulomb's law. The analysis also assumes
that the displacements are small and that the tooth materials are linearly elastic. The analysis procedure
is validated by comparing its results with those for the classical case of two contacting semicylinders
obtained from the Hertz method. Agreement is excellent.

INTRODUCTION

The life and performance of gear teeth are directly related to the ability of the teeth to withstand
contact stresses. Contact stresses may produce pitting within the contact area and eventually lead to
tooth failure. In spite of the importance of contact stresses in gears, comprehensive analyses of these
stresses have not been extensively reported in the literature. Indeed, most analyses are based upon
procedures that require simplified assumptions about the geometry of the contacting surfaces. Although
these assumptions are needed for the classical procedures, their use raises questions about the accuracy
and applicability of the results.

In this report we attempt to obtain a more representative and hence a more accurate analysis. The
method is based upon an incremental finite element procedure (an iterative technique) that simultane- i
ously determines the stresses and the contact area. Our motivation for using the finite element method
(FEM) is based upon the success of the method in determining fillet stresses due to gear tooth bending E2
(refs. 1 and 2). Our motivation for using the incremental procedure is based upon the success of other Li
analysts in using it with contact analyses. For example, in 1970 Wilson and Parsons (ref. 3) used a dif- -.........

ferential displacement method to study frictionless contact problems. This approach was later extended
by Ohte (ref. 4) to include frictional effects. In 1979 Okamoto and Nakazawa (ref. 5) presented the incre-.-
mentation technique. This technique was also presented at about the same time by Skinner and Streiner
(ref. 6) and by Urzua et al. (ref. 7). The technique was presented in automated form by Torstenfelt in es
1984 (ref. 8) ..

Chih-Ming Hsieh is presently at Modern Engineering, Warren, Michigan 48092.
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The incremental procedure enjoys a number of advantages over more traditional finite element pro-
cedures: Specifically, (1) no special elements, such as gap elements or contact elements, are needed;
(2) the calculated incremental loads follow the actual load history; (3) friction forces , once computed, are
treated as known tangential loads and thus the standard analysis procedures of the finite element method
remain intact; and (4) general-purpose finite element codes may readily be used in the analysis. In the
research described herein we apply the incremental finite element procedure to the special geometry of
involute spur gear teeth. The balance of this report presents the basic formulation of the method, the
automation of the method, a validation of the method, some results for spur gear contact stresses, and a
discussion and some concluding remarks.

SYMBOLS

a semilength of contact

E elastic modulus

e accuracy parameter

F nodal force in contact region

{F} column vector of nodal global forces

{AF} incremental global force vector

[I] identity submatrix

[K] global stiffness matrix

n normal unit vector in contact region

P(x) pressure as function of x

P0  maximum normal contact pressure

R nodal reaction force in contact region

{AR} incremental nodal load vector

[S],[Q] nonsquare transformation matrices

[T] transformation matrix

t tangential unit vector in contact region

U nodal displacement in contact region

{U} column vector of nodal global displacements

{AU} incremental global displacement vector

&1,&2,& 3 scale factors defined in equations (17), (18), and (20)

6 gap distance

{6n} nodal separation in contact region

A coefficient of friction between contacting bodies

V Poisson's ratio

aOxOy normal stresses
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T shear stress

Subscripts and symbols:

a,b refers to bodies a and b

iji typical pair of contacting nodes

max maximum

n,t normal and tangential directions

represents matrix in local (n,t) coordinate system

METHOD FORMULATION

The incremental procedure is an application and natural extension of the basic finite element method:
Let the governing matrix equation for a finite element analysis be written as

{F) = [K]{U} (1)

where {F) is the column vector of nodal global forces, [K] is the global stiffness matrix, and {U} is
the column vector of nodal global displacements.

Consider a structure discretized into elements and nodes such that equation (1) relates the nodal
global forces and displacements. Let there be an increment in the nodal forces. Let these incremental
forces be designated by the column vector {AF), and let the resulting incremental nodal global dis-
placements be designated by the vector (AU). If the global geometry of the structure is essentially
unchanged by the force increment, the global stiffness matrix [K] is essentially unchanged. Hence, from
equation (1) the governing equation relating {AF} and {AU} is

{AF} = [K]{AU) (2)

To apply equation (2), consider two typical bodies A and B in contact over a surface C-C' as
depicted in figure 1. Let A and B be discretized into elements and nodes in the usual manner of finite
element analysis, except that in the contact region let each node on the surface of A have a correspond-
ing opposite, or mating, node on the surface of B (see fig. 1).

Consider a typical pair of mating, contacting nodes, i and i', as depicted in figure 2. Let t-n be
local Cartesian axes defining the "average" tangential and normal directions. Let {AR-n} and {ARit )
(j = a,b) represent incremental normal and tangential loadings on i and i'. Similarly, et {AUin}
and {AUjt} (j = a,b) be the resulting incremental displacements.

The contact status can be categorized as being either (1) open, (2) closed and sticking, or (3) closed
and sliding. In each case the equilibrium and continuity conditions must be satisfied. That is,
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(1) For open nodes (no contact)

{AUbn} -{AUn} !5 {6n}

{ARan }  {ARbn} = {O} (3)

{ARat} {ARbt} = {0}

(2) For closed and sticking nodes (no relative movement)

{AUbn} = {AUan} + {n}

{AUat} = {AUb}
(4)

{ARan = -{ARbn}

{ARat} = -{ARbt}

(3) For closed and sliding nodes (tangential movement)

{AUbn} = {"an} + {n}

{ARbn = -{AR.} (5)

{ARbt} = -{ARat} = ±f{ARn}

where {6n} is the normal "gap" vector between contacting nodes and u is the coefficient of friction
between the surfaces. (Coulomb friction is assumed and the sign in the final terms of equation (4) is
chosen so that energy is dissipated.)

To use the constraint conditions of equations (3) to (5) with the governing equations, it is useful to
transform the columns and rows, which are associated with the contacting node pairs, from the global
(x,y) system to the local (n,t) system. Let {AF} and {AU} represent the incremental load and
displacement vectors in the local system, and let [T] be the (orthogonal) transformatior matrix from the
local to the global system. Then

{AF} = [T){AP)

and (6)

{AU} = [T]{AU}
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By substituting equations (6) into equation (2), we obtain the relation

{AF} = [T]T [K][T]{AU} = [K]{AJ} (7)

where the stiffness matrix [k] is defined by inspection.

By assembling together the terms associated with the contacting nodes, equation (7) can be expressed
as

AFa AUa

AFan + ARan AUan

AFat + ARat AUat (8)

AFb- + ARb [] AUb

AFbt + ARbt AUbt

AFb AUb

Equation (8) is then the matrix form of the force-displacement relations. To obtain the complete set
of governing equations, it is necessary to impose the contacting boundary constraints of equations (3)
to (5) for the three contact conditions: open nodes (no contact), closed and sticking nodes (no relative
movement), and closed and sliding nodes (tangential movement).

Open nodes (no contact).-In this case no constraints are needed. However, equations (3) need to be
satisfied during each numerical iteration for which any matching node pairs are deemed to be open.

Closed and sticking nodes (no relative movement).-In this case equations (4) are constraining rela-
tions that need to be satisfied. After substitution from equations (4), equations (8) take the form

AFa AUa

AFan + ARan AUan

AFar + ARat AUat

AFbn - ARan AUan + bn

AFbt - ARat AUat

AFb AUb

Equation (9) can be reduced by eliminating the unknown contact forces {AR.n} and {ARat} . To this
end, we introduce rectangular transformation matrices [s1] and [S2] defined as
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aO0 0 00000

Ole00 0000

IS1 ] = and IS21 (10)
0Ic00 OcO0

001C0 0000

0 00 b  
0000

where I is an identity matrix with dimensions equal to the number of degrees of freedom of the nodes
of body a less the number of degrees of freedom of the contact nodes, Ib is the corresponding identity
matrix for body b, and Ic is an identity matrix with dimensions equal to the number of degrees of free-
dom of the contact nodes. For example, if a finite element model has 40 nodes for each of bodies a and
b and if there are 5 contact node pairs, then la has dimensions (40 - 5) x 2 = 70 , Ib has dimensions
(40 - 5) x 2 70, and Ic has dimensions 5 x 2 = 10. Observe that these matrices have properties such
that

AUa

AUan AUa 0

AUat IS,]AUan 6 (11)

AUan + AUat 0

AUat AUb 0

AUbt

and

AFa

AFa AFan + A Ran

AFan + AFbn AFat + ARat= [Silt at a (12)
AFat + uAFbt AFbFn - ARan

AFb AFbt - ARat

AFb
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Premultiplying equation (9) by [Sl]T and substituting from equation (11) gives the reduced system

AFa 0 AUa

AFan + AFbn D AUan
AFat+ AFbt [ST[kI[S2I 0 = [sa]T[K][S1] AUan (13)

AFat + AFbt 0 AUat

AFb 0 LAUbi

Closed and sliding nodes (tangential movement).-In this case equations (5) are constraining relations
that need to be satisfied. After substitution from equations (5), equations (8) take the form

AFa AUa

AFan + ARan AUan

AFat ± uSARan AUat

AFbn - ARan AUan + n

AFbt =:F AARan AUbt

AFb AUb

By following a similar procedure to that of case (2), equations (14) can be reduced to the form

AFa AUa

AFan + AFbn 0 AUan

AFat +F AAFan -[Q 3][K I[Q2] = [Q31[k ]IQ,] AUat (15)

0
AFbt ± uAFan 0 AUbt

AFb AUb
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where [Q1], [Q2], and [Q3] are transformation matrices defined as

'a 0 0 0 0 000 I 0 0000

0IC00 0 0 0 0Ic 0I 00

[Q11= 0 0'Co Q1an Q 000 TPIC Ic 0 00 (16)

0 0 I00 0 0 0±Ic 0 0 Ic 0
0 00 0 0

0 0 0 l b  0 0 0 0 0 0 0 0 0 Ib -

Observe that in this case the stiffness matrix [Q3][k][Q 1] is not symmetric. The dissymmetry is due
to the Coulomb friction forces. The ± and T signs are chosen to dissipate energy because the work due
to friction forces is negative.

The governing equations, equations (8), (13), and (15), can be solved for the incremental displace-
ments {AUan}, {AUat}, {AUb}, and {AUbt}. Then by backsubstitution the incremental forces
{ARan}, {ARat}, {ARb}, and {ARbt} can be obtained. However, at each incremental load the assumed
contact conditions must be checked and adjusted, if necessary. Table I lists the contact region criteria
and the transition boundaries. Iterations must be performed at each increment until convergence between
assumed and calculated contact and frictional conditions is obtained.

AUTOMATION OF METHOD

The analysis method is based upon the assumption that the size of the load increments is sufficiently
small that there is a linear load-displacement relationship and also that there is no more than one change
of contact condition or phase in any load step. An algorithm to automatically limit the size of the load
increment can be developed by studying the transitions between contact phases. The procedure is based
upon an evaluation of the amount of load increment needed to reach a phase boundary. This "amount"
is measured in terms of "scale factors."

The development proceeds as follows: First, we categorize the contact phase change as being either
(1) from open to contact or (2) from contact to open. Next, within the contact region we categorize
phase change as being either (3) from sticking to sliding or (4) from sliding to sticking.

From open to contact.-Suppose a load increment {AF} causes an open pair of contact nodes, say a
and b, to come into contact and even pass each other (analytically). Then, due to the assumed linearity,
the proportion al{AF} of the load increment needed to exactly close the gap distance b can be deter-
mined. Specifically, let the relative displacement of a and b in the direction n, normal to the surface,
due to {AF}, be AU. - AUbn. Then the scale factor a1 needed to close the gap without penetra-
tion is determined by the relation

al(AUan - AUbn) = 6 (1 7a)
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or

al= 6 /(AUan - AUbn) (17b)

From contact to open.-If the normal force Rn between two contacting nodes a and b becomes a
tensile force, the surfaces will separate. If AR n is the normal load increment during separation, in a
typical iteration step, the proportion a2 AR n of the load increment needed to exactly reach the transi-
tion between contact and separation is given by the relation

Rn + a2 AR n = 0 or a2 = -Rn/AR n  (18)

where a2 is the scale factor.

From sticking to sliding contact.-From Coulomb's law of sliding with friction there will be a transi-
tion between sticking and sliding at a contacting node pair when the tangential force R, exceeds uRn,
where p is the friction coefficient and where, as before, Rn is the normal force. Let AR t and AR n
be increments in the tangential and normal contact forces due to a load increment {AF}. If the load
increment is sufficiently small, AR t and AR n are proportional to the magnitude of {AF} and hence
proportional to each other. Then the proportions a3 AR t and a3 AR n of the tangential and normal
force increments needed to reach the transition between sticking and sliding are given by the expression

±(Rt + a3 ARt) = ju(RR + a3 ARn) (19)

where the sign is positive if R t AR n  Rn AR t and negative otherwise. Hence, the scale factor a3 is

Rt - zARn
a3 = - for R t AR n -_ R n ARt (20)

A Rt -u AR n

and

a3 = - + i AR for R t AR n > R n AR t  (21)
AR t + u AR n

Note that the static (stick condition) friction coefficient is generally slightly higher than the dynamic
(sliding) friction coefficient. This difference has been neglected in this analysis.

From slidin to stick contact.-It is difficult to establish and calculate a load scale factor for the
transition from sliding to sticking contact. Therefore, for this case we simply assume all sliding nodes are
sticking as a new load increment is applied. Then, we examine the sliding/sticking character of the con-
tacting nodes: If they are sliding, no status change has occurred. However, if they are sticking (indi-
cating a status change), the load increment must be reduced to establish the location and loading of the
phase change.

After the scale factors 01,02,a3 are determined for each case, for all contacting node pairs, the mini-
mum of these (designated a) is selected as the global load scale factor. That is, the load increment
{AF} is reduced to a{AF} and the process is repeated.
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When friction is present and where there is a tentative phase change from sticking to sliding, the
accuracy of the incremental procedure can be improved by monitoring the friction forces R t . Specifically,
sliding will occur when R, approaches jR n . Hence, an additional iteration criterion can be established
by requiring R t to satisfy the relation

(1 - e)pR n < Rt < uR n  (0 < e <1) (22)

where e is an accuracy parameter.

Figure 3 shows a flow chart outlining the steps of the procedure.

VALIDATION: CONTACT BETWEEN IDENTICAL INFINITE CYLINDERS

A computer code was written to execute the foregoing algorithm. To validate the algorithm and the
code, we first considered the contact between two semicylinders as depicted in figure 4. The semicylin-
ders are geometrically identical, but they were given different elastic properties to investigate and illu-
strate the effect of elasticity upon the contact mechanics. They each have radius Ra = Rb = 1.0 inch
and infinite length. Their elastic moduli and Poisson ratios are

Ea = 3.0x10 7 psi (steel)

Eb = 1.8x10 7 psi (beryllium copper)

Va = 0.292 (23)

vb = 0.285

The cylinders were aligned with parallel axes and pressed together by a uniform distributed load p of
5x 10 psi, as depicted in figure 4. Figure 5 shows the finite element mesh for the semicylinders. The
mesh is very fine in the contact region. It has a total of 412 nodes and 364 linear quadrilateral plane
strain elements. Three contact conditions were examined: Frictionless contact, friction contact without
sliding, and friction contact with sliding.

Frictionless contact.-Figure 6 shows the resulting stress distribution for frictionless contact. The
horizontal and vertical normal stresses and the maximum shear stresses are plotted along the vertical axis
of symmetry. The stresses are measured in multiples of the maximum normal contact pressure p0 of the
Hertz theory. Comparisons with the classical Hertz solution (ref. 9) are also given.

Figure 7 shows the distribution of normal stress in the contact area and also a comparison with the
Hertz solution, where a is the semilength of contact of the Hertz solution. The contact area determined
by the finite element solution is approximate in that the boundary between the contact and open regions
lies between the closed and open node pairs. The boundary position can be estimated by interpretation.

Table II presents a comparison of the numerical results and the Hertz results for the maximum con-
tact pressure, the maximum shear stress, and the semilength of the contact.
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Friction contact without sliding.-To determine the effects of friction, the stresses were calculated
with friction coefficients u of 0.0, 0.06, 0.12, and o. Figure 8 shows the results for the contact forces
on the upper and lower cylinders. Figure 9 shows detailed representations for portions of the normal and
tangential contact forces. Observe in figure 9(a) that the maximum normal contact forces increase with
the friction coefficient. However, there is relatively little increase once the coefficient exceeds 0.12.
Observe also that the normal contact forces decrease slightly in the edge region when the friction coef-
ficient increases.

Finally, table III shows the results for the semilength of the contact. As expected, the length
decreases as the friction coefficient increases.

Friction contact with sliding.-To determine the effect of friction when there is slipping or sliding
between contacting nodes, let the upper cylinder of figure 4 rotate counterclockwise relative to the lower
cylinder. Figures 10 and 11 show the resulting maximum compressive (principal) stresses and maximum
shear stresses on the upper cylinder in the contact area for various friction coefficients. Analogous and
similar results were obtained for the lower cylinder.

CONTACT STRESSES BETWEEN SPUR GEAR TEETH

Consider a pair of identical spur gear teeth in contact with each other at their pitch points. Let the
teeth be modeled as in figure 12 with the tooth on the right being the driving tooth. Let the teeth have
a fillet radius of 0.045 inch, a face width of 0.25 inch, and a pressure angle of 200. Let the teeth be ele-
ments of gears with a diametrical pitch of 8.0 and with 28 teeth per gear. Let the elastic modulus be
30x106 psi with a Poisson's ratio of 0.3. Let the driving gear have a clockwise torque of 50 000 in.-lb.

The stresses were calculated for the same friction cases as before.

Frictionless contact.-Figure 13 shows stress contour results for the maximum compressive (principal)
stresses and for the maximum shear stresses. The maximum contact pressure was found to be 8.11 x 105

psi, which is approximately 10 percent higher than that predicted by the Hertz method (ref. 10):

Friction contact without sliding.-Figure 14 shows the distribution of normal and tangential contact
forces for the driving gear for four friction coefficients: 0, 0.05, 0.10, and -. Analogous results were
obtained for the driven gear.

Friction contact with sliding.-Figure 15 shows the maximum compressive (principal) stress and
maximum shear stress distributions in the contact region for the driving gear tooth. Analogous results
were obtained for the driven gear.

DISCUSSION

The results demonstrate the feasibility and the practicality of using the finite element method for gear
stress calculations. Success in obtaining reliable results, however, is dependent upon the incrementation
of the load to establish the extent of the contact area, which is unknown at the start of the problem.

Because the contact region boundaries are unknown, they must be determined iteratively. These
boundaries are more sensitive to the loading than are the stresses. This is seen in table II, where the dif-
ference in the stresses between the Hertz and finite element analyses is much less than the difference in
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the contact region. The sensitivity of the contact region arises from the near-parallel surfaces of the con-
tacting bodies in the contact region.

The inclusion of friction effects creates an additional complexity in the analysis. Indeed, friction pro-
duces a dissymmetry in the stiffness matrix that significantly increases the computational effort. The
computational effort was reduced by treating the friction forces as known external tangential forces that
are determined from the previous iteration step.

The results also show that friction produces higher stress in the contact region than when friction is
absent. This means that precise surface geometry, polished surfaces, and lubrication can significantly
reduce the stresses and thus increase surface life.

The gear stress analysis is not comprehensive but only representative and illustrative of spur gear
tooth stresses. The analysis is conducted for pitch point contact where there is no sliding due to gear
kinematics. This means that an assumption of frictionless contact at the pitch point is very reasonable.
Indeed, figures 14 and 15 show that friction has a relatively small effect on the analysis.

Plane strain finite elements were used for the analysis presented in this paper. Plane strain is most
suitable for very thick bodies such as the infinitely long cylinders used to compare the analysis with Hertz
theory. For gear teeth, plane stress finite elements may be more appropriate, especially for narrow-face-
width gears. Finally, the analysis assumes either static or sliding contact, whereas the contact between
gear teeth in service is divided between sliding and rolling phases. Hence, more study is needed to obtain
a comprehensive stress analysis.

CONCLUDING REMARKS

An incremental finite element procedure has been investigated for the analysis of contact stresses with
application to meshing spur gears. The following conclusions have been reached:

1. The feasibility and practicality of the procedure were established through several examples and by
favorable comparison of results with those of the classical Hertz method.

2. Because the contact area is not known a priori, it was necessary to employ an iterative procedure
(herein called the load incremental procedure) to simultaneously determine the stresses and the contact
area.

3. The presence of friction between contacting surfaces increases the contact stress. This in turn
means that precise surface geometry, polished surfaces, and effective lubrication can reduce contact
stresses and thus increase surface life.

4. The method is directly applicable to gear stress calculations. However, more analyses are needed to
obtain a comprehensive understanding of contact mechanics throughout a mesh cycle.
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TABLE 1.-CONTACT CRITERIA AND

TRANSITION BOUNDARIES

Condition Criterion

Before After

Open Open (AUbn - AU) - 6n > 0

Close (AUbfl - AU..) - 6n < 0

Stick Stick Ran > 0, Railj < 1,1I1anI

Open Ra, < 0

____Sliding R8 0 > 0, RjRI juIRan

Sliding Stick Ran >0, AR t(AU~t - AUbt) > 0

Open Ran < 0

_____Sliding ,Ra. ! , ARJAU at - AU bt) !50

TABLE 1.-COMPARISON OF RESULTS OF FEM AND HERTZ

FEM Hertz Error,
method percent

Maximum contact 19.33 19.76 -2.20
pressure, PO, ksi

Maximum shear stress, 5.536 5.928 -2.60
Tma.xi ksi

Semilength of contact, .01732 .01611 7.51
a, in.I

TABLE III.-FRICTION

COEFFICIENT AND

SEMILENGTH OF

CONTACT

Friction Semilength
coefficient, of contact,

Aa,
in.

0 0.01732
.06 .01730
.12 .01729

-. 01727
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C - C.

Figure 1.-Two typical bodies in contact.

A
C I Fat, Uat

Flat
Ran n

Rbn t

Figure 2.-Pars of typical contact forces.
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V

A R.

B Rb

Figure 4.-Contact between two semicylinders. Figure 5.-Semicylinder finite element mesh.

1.0

1.0 Hertz methdod-

S 0 FEM

Iu,  0, Stress

0 .5 1.0 1.5 2.0 2.5 3.0 0 .2 .4 .6 .8 1.0 1.2
yla xa

Figure 6.--Subsurface stresses along axis of symmetry. (Stress Figure 7.-Distribution of normal stress in contact surface.
values are normalized by PO, the maximum normal contact (Stress values are normalized by PO, the maximum normal
pressure.) contact pressure.)
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x/a (b) Tangential contact forces (upper cylinder)--an

(b) Lower cylinder. enlargement of area II of figure 8(a).
Figure 8.-Distribution of contact forces. Figure 9.-Detailed representation of forces.
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of friction, Coefficient
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A .3 .1

30 0 .5 .3
O .7 0 .5

0 .7

20 1

o I 1 II

-. 3 -. 2 -. 1 0 .1 .2 .3 -. 3 -. 2 -. 1 0 .1 .2 .3
Tangential distance from initial contact point along Tangential distance from Initial contact point along

contact area, in. tooth profile, in.

Figure 10.-Maximum compressive (principal) stresses on Figure 11 .-- Maximum shear stresses on upper cylinder in con-
contact surface of upper cylinder (sliding case). tact area (sliding case).
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0

(a) Maximum compressive (principal) stress.

Figure 2.-Spur gear teeth In contact at pitch point.

(b) Maximum shear stress.

Figure 1 3.-Stress contours for frictionless contact.
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